



# BASICS OF NUCLEAR MAGNETIC RESONANCE

## II

Bernard Lanz, PhD  
*CIBM MRI EPFL*

27.02.2025

**PHYS-770**

**CIBM translational MR neuroimaging & spectroscopy**

**EPFL**

# THE ORIGIN OF MAGNETIC RESONANCE

- MRI/MRS are powerful imaging techniques for their flexibility and sensitivity to a wide range of tissue properties
- MRI/MRS are popular for their relative safety, their non-invasive nature, the use of no ionizing radiation.
- MRI/MRS are applications of NMR (nuclear magnetic resonance) to radiology.

(N) Nuclear (we play with the atom nucleus)  
M Magnetic (we interact with it with magnetic fields)  
R Resonance (we need to match the RF field to the natural precession of the nucleus)  
I/S Imaging or Spectroscopy (the outcome measurements)

# NUCLEAR MAGNETIC RESONANCE

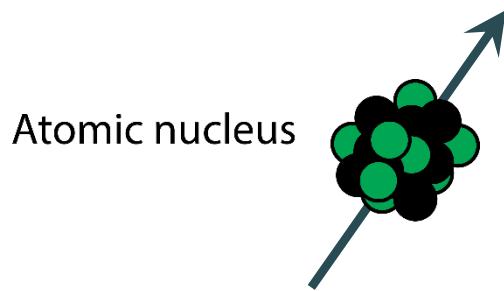
## Magnetic fields in the game:

- Main magnetic field  $B_0$  : on the order of 1 T
- Gradient fields  $G_x, G_y, G_z$  : on the order of 100 mT/m
- Radio frequency (resonant) field  $B_1$  : on the order of 10  $\mu$ T
  - Very low amplitude (earth magnetic field  $\approx 25-65 \mu$ T)
  - Very high frequency (on the order of 100 MHz)
  - Depends linearly on the applied  $B_0$  field and Nucleus of interest

# THE ORIGIN OF MAGNETIC RESONANCE

## The dual nature of the MR phenomenon

### Interaction of magnetic moments of nuclei with the magnetic field:



Atomic nucleus

● proton (spin 1/2)

● neutron (spin 1/2)

- Atomic nuclei possess an intrinsic angular momentum (spin)  $L$ , as a composition of the spin of their composing protons and neutrons
- According to quantum mechanics,  $L$  is quantized:  $|\vec{L}| = \left(\frac{\hbar}{2\pi}\right) \sqrt{I(I + 1)}$   
 $I = 0, 1/2, 1, 3/2, \dots$

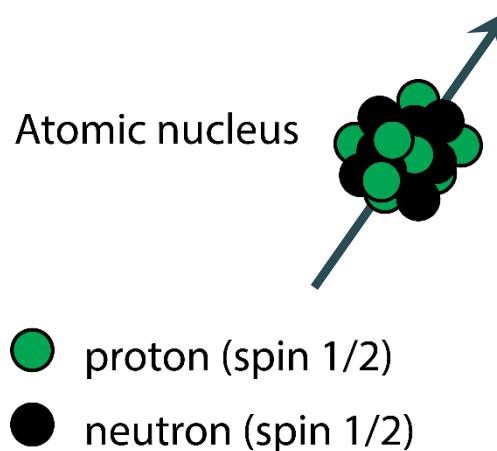
Depending on their composition:

|                                                     |                         |
|-----------------------------------------------------|-------------------------|
| - even number of protons and neutrons               | $I=0$                   |
| - odd number of protons and neutrons                | $I=\text{integer}$      |
| - odd number of protons and even number of neutrons | $I=\text{half-integer}$ |
| - odd number of neutrons and even number of protons | $I=\text{half-integer}$ |

# NUCLEAR SPIN AND MAGNETIC MOMENT

## The dual nature of the MR phenomenon

### Interaction of magnetic moments of nuclei with the magnetic field:

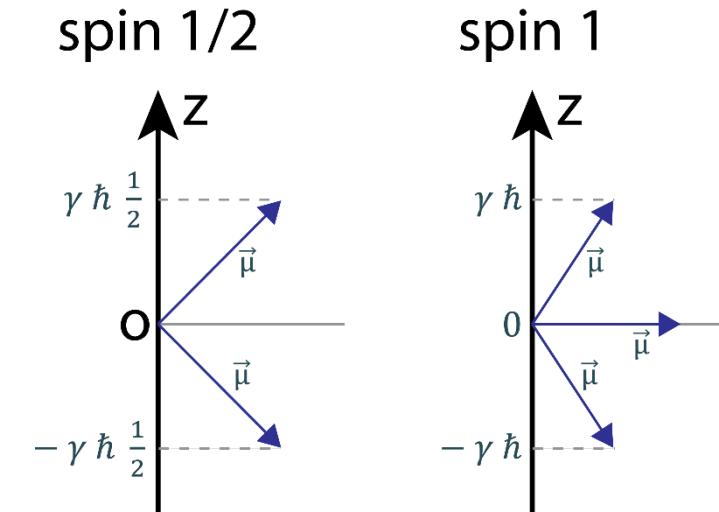


- The intrinsic angular momentum  $L$  is associated to a magnetic moment  $\mu$ :  
$$\vec{\mu} = \gamma \vec{L}$$
with  $\gamma$  the gyromagnetic ratio, specific for each nucleus, specifying the strength of coupling between the magnetic field and the angular momentum.

- In the magnetic field  $\vec{B}_0$  defined as  $\vec{B}_0 = B_0 \hat{e}_z$ , the measured projection of the nuclear magnetic moment  $\vec{\mu}$  are quantized:

$$\mu_z = \gamma \hbar m$$

with  $m = -l, -l+1, \dots, l-1, l$   
( $2l+1$  values)



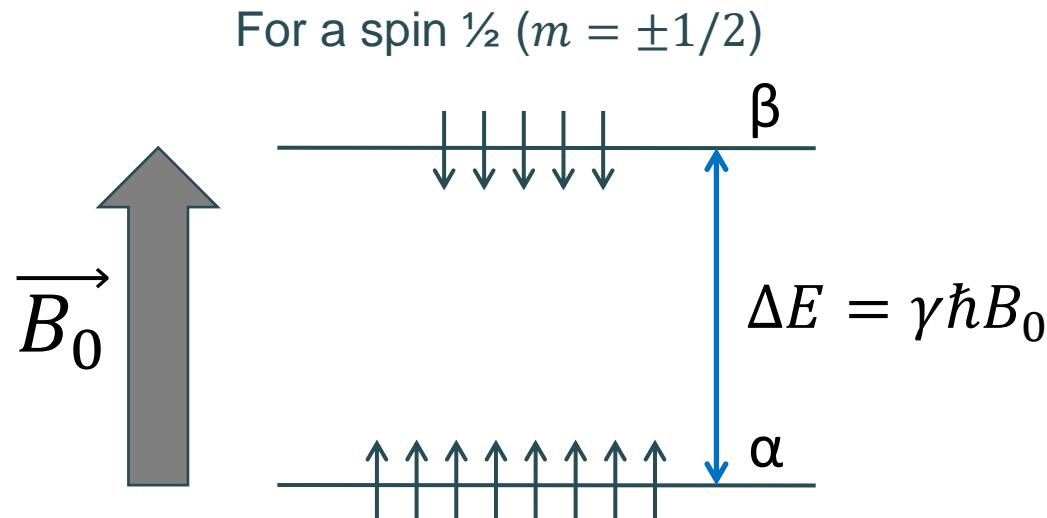
# ZEEMAN ENERGY LEVELS

- Zeeman energy:

Potential energy of a magnetized nucleus in an external magnetic field

$$E = -\vec{\mu} \cdot \vec{B}_0$$

$$E = -\mu_z B_0 = -\gamma \hbar m B_0$$

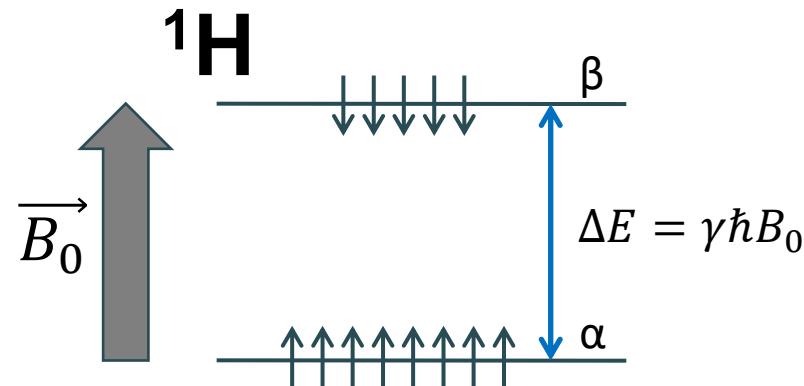


There is no spontaneous transition between energy levels  
(no emission of energy)

All changes in the energy of nuclei are through stimulated transitions

# ZEEMAN ENERGY LEVELS: SPIN DISTRIBUTION

- Zeeman energy:



Boltzmann distribution:

$$\left( \frac{n_\alpha}{n_\beta} \right) = e^{\frac{\gamma B_0 \hbar}{kT}}$$

Linearized Boltzmann distribution:

$$(n_\alpha - n_\beta) \approx \left( \frac{nh\gamma B_0}{2kT} \right)$$

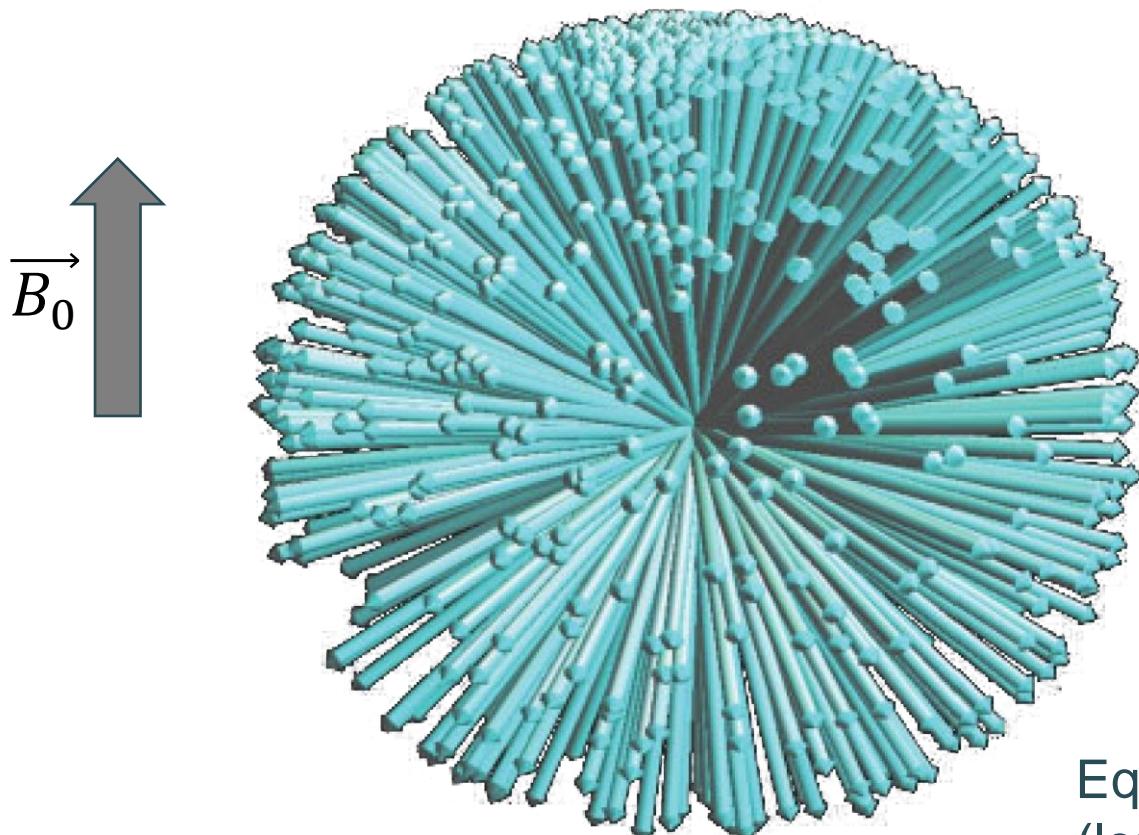
- Amplitude of the magnetization:  $M_0 = (n_\alpha - n_\beta) \mu_z = (n_\alpha - n_\beta) \gamma \frac{\hbar}{2}$
- Total magnetization:  $M_0 = n \frac{1}{2} (\gamma \hbar)^2 \left( \frac{B_0}{2kT} \right) \propto \gamma^2$

# INTERESTING NUCLEI / ISOTOPES

| Nucleus          | Magnetic moment | Gyromagnetic ratio<br>(rad·MHz T <sup>-1</sup> ) | Relative sensitivity | Natural abundance (%) |
|------------------|-----------------|--------------------------------------------------|----------------------|-----------------------|
| <sup>1</sup> H   | 1/2             | <b>267.522</b>                                   | 1.0                  | <b>99.98</b>          |
| <sup>2</sup> H   | 1               | 41.066                                           | 0.00965              | 0.015                 |
| <sup>13</sup> C  | 1/2             | 67.283                                           | 0.0159               | 1.108                 |
| <sup>14</sup> N  | 1               | 19.338                                           | 0.0101               | 99.63                 |
| <sup>15</sup> N  | 1/2             | -27.126                                          | 0.0104               | 0.37                  |
| <sup>19</sup> F  | 1/2             | 251.815                                          | 0.83                 | 100                   |
| <sup>23</sup> Na | 3/2             | 70.808                                           | 0.0925               | 100                   |
| <sup>29</sup> Si | 1/2             | -53.190                                          | 0.00784              | 4.7                   |
| <sup>31</sup> P  | 1/2             | 108.394                                          | 0.0663               | 100                   |

# MACROSCOPIC MAGNETIZATION

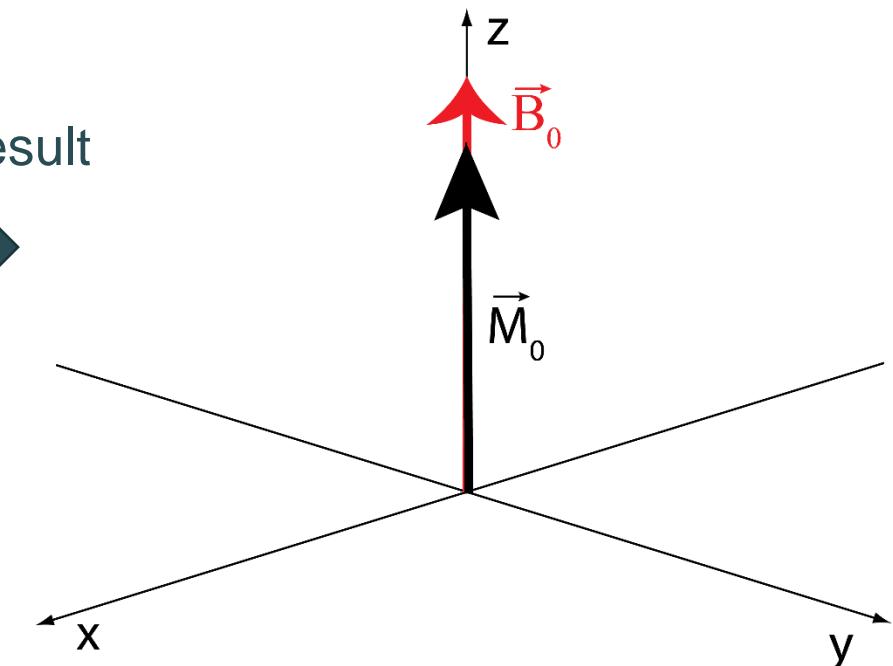
Large spin ensemble



Macroscopic result



Magnetization



Equilibrium magnetization  $\vec{M}_0$  is parallel with  $\vec{B}_0$  (longitudinal magnetization), its status can be changed by a radiofrequency magnetic field

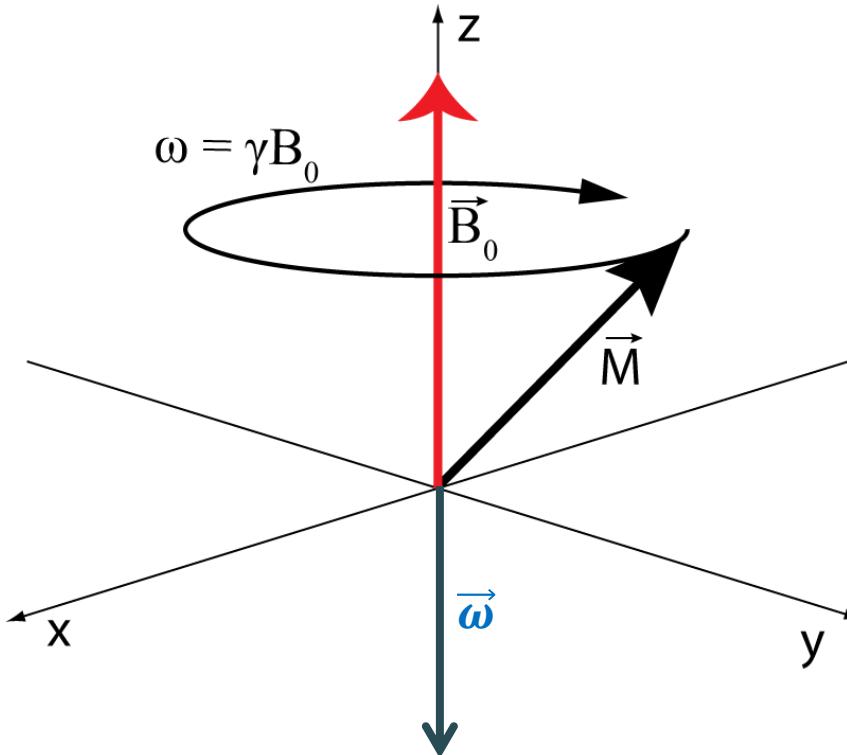
# PRECESSION

Equation of precession:

$$\frac{d\vec{M}}{dt} = \gamma \vec{M} \times \vec{B}_0$$

For positive  $\gamma$  ( $^1\text{H}$ ,  $^{13}\text{C}$ ,  $^{31}\text{P}$ )

( $\vec{\omega} // \vec{B}_0$  for negative  $\gamma$ ,  $^{15}\text{N}$ ,  $^{17}\text{O}$ )

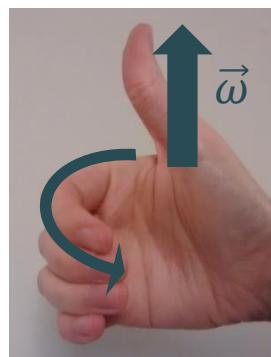


Rotation defined with an angular speed vector:

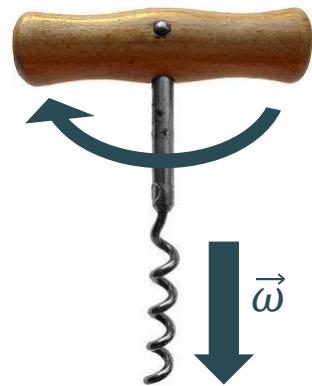
$$\frac{d\vec{M}}{dt} = \vec{\omega} \times \vec{M}$$

With

$\omega = \gamma B_0 \equiv \omega_0$  The Larmor frequency



Or corkscrew rule...



# THE ROTATING FRAME(S)

## LARMOR FRAME

In the laboratory frame:

$$\frac{d\vec{M}}{dt} = \gamma \vec{M} \times \vec{B}_0$$

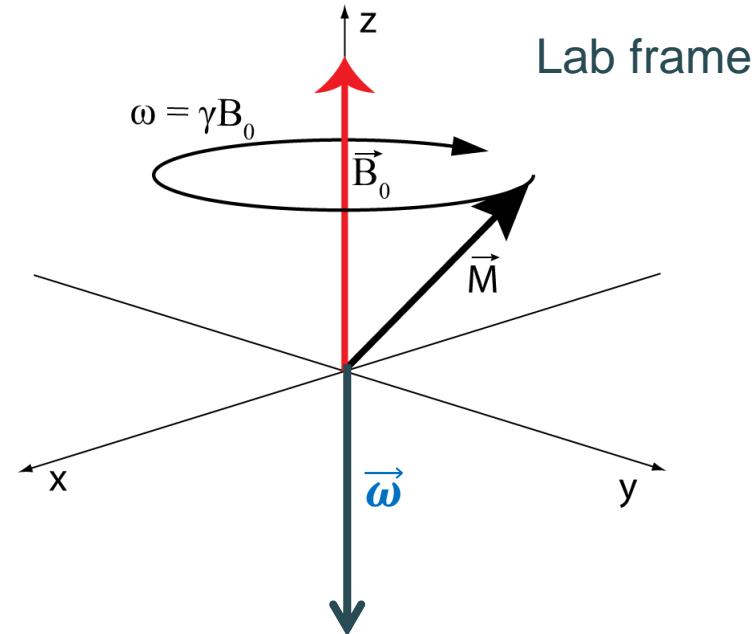
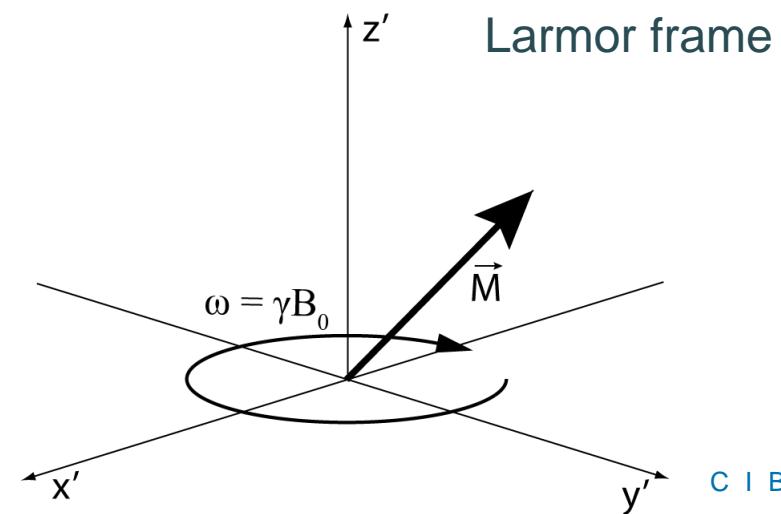
Expression in the rotating frame:

$$\left(\frac{d\vec{M}}{dt}\right)_{lab} = \left(\frac{d\vec{M}}{dt}\right)_{rot} + \vec{\omega} \times \vec{M}$$

In the Larmor rotating frame:

$$\left(\frac{d\vec{M}}{dt}\right)_{rot} = \left(\frac{d\vec{M}}{dt}\right)_{lab} + \gamma \vec{B}_0 \times \vec{M}$$

$$\frac{d\vec{M}}{dt} = 0 \rightarrow \text{No apparent } B_0 \text{ magnetic field}$$



# FLIP ANGLE

## THE RESONANCE CONDITION

If we apply a pulse  $B_1(t)$  right at the Larmor frequency of the considered spin system

$$\rightarrow \omega_{RF} = \omega_0$$

The dynamics of the magnetization is very much simplified:

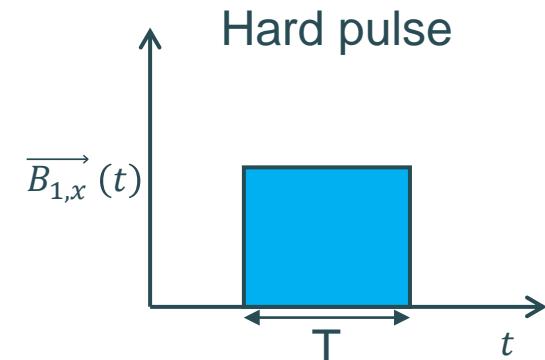
$$\left( \frac{d\vec{M}}{dt} \right)_{rot} = \gamma \vec{M} \times \overrightarrow{B_1(t)} \quad \text{with } B_1(t) \text{ the envelope of the pulse}$$

### Flip angle (nutation angle)

$$\theta = \gamma \int_t^T B_1(t) dt$$

### For a hard pulse

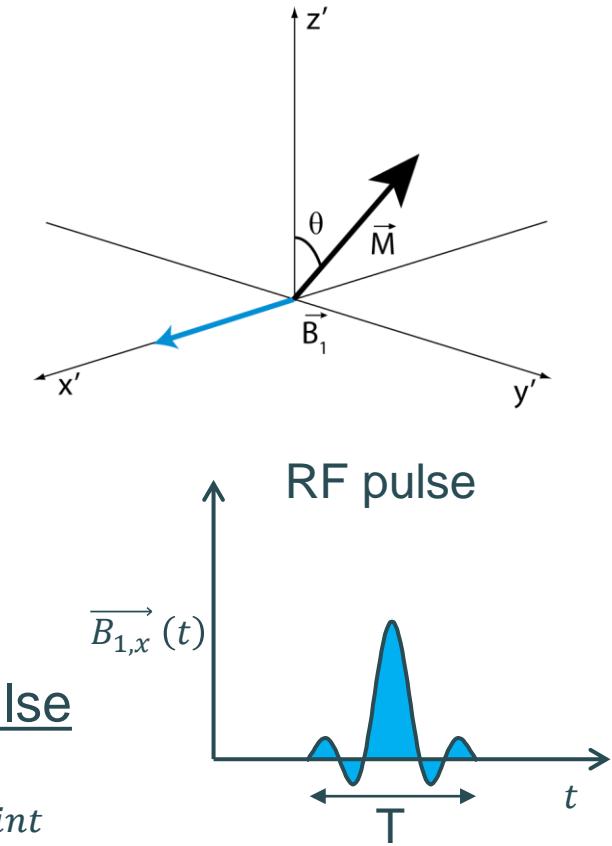
$$\theta = \gamma B_1 T$$



### For a general pulse

$$\theta = \gamma B_1 T S_{int}$$

with  $S_{int}$  the pulse shape integral



# QUANTUM DESCRIPTION

## Single spin expectation values

$$\langle \mu_x \rangle = \frac{\gamma \hbar}{2} \sin \theta \cos (\phi_0 - \omega_0 t)$$

$$\langle \mu_y \rangle = \frac{\gamma \hbar}{2} \sin \theta \sin (\phi_0 - \omega_0 t)$$

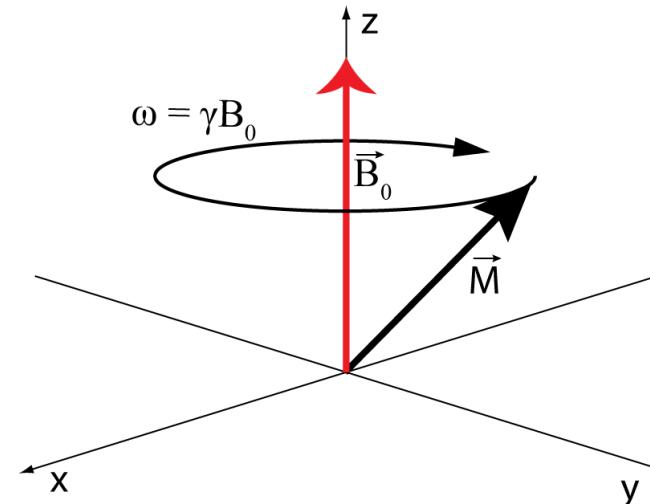
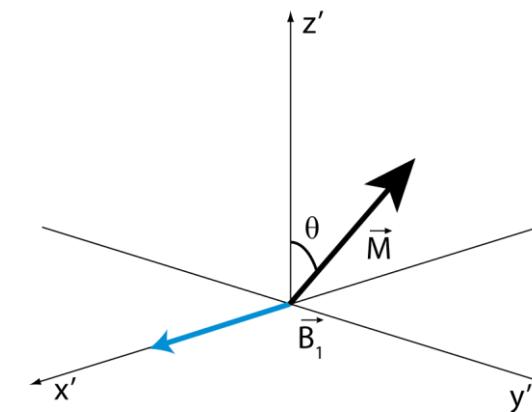
$$\langle \mu_z \rangle = \frac{\gamma \hbar}{2} \cos \theta$$

$$\langle \mu_{x'}(t) \rangle = \langle \mu_{x'}(0) \rangle$$

$$\langle \mu_{y'}(t) \rangle = \langle \mu_{y'}(0) \rangle \cos \omega_1 t + \langle \mu_z(0) \rangle \sin \omega_1 t$$

$$\langle \mu_z(t) \rangle = -\langle \mu_{y'}(0) \rangle \sin \omega_1 t + \langle \mu_z(0) \rangle \cos \omega_1 t$$

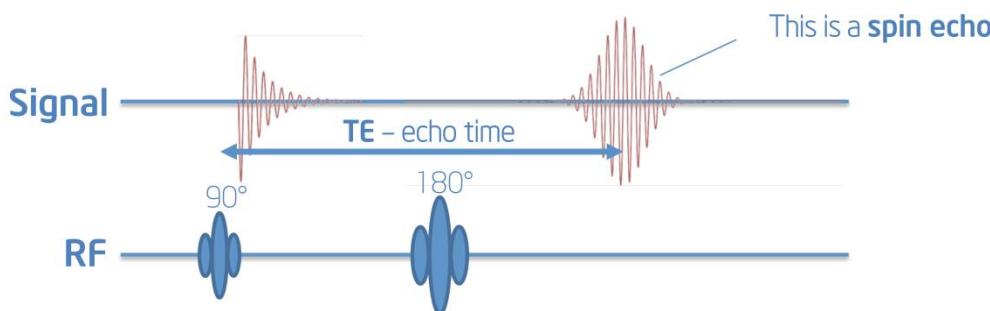
Haake et al., Magnetic Resonance Imaging, Physical principles and sequence design, Wiley 1999



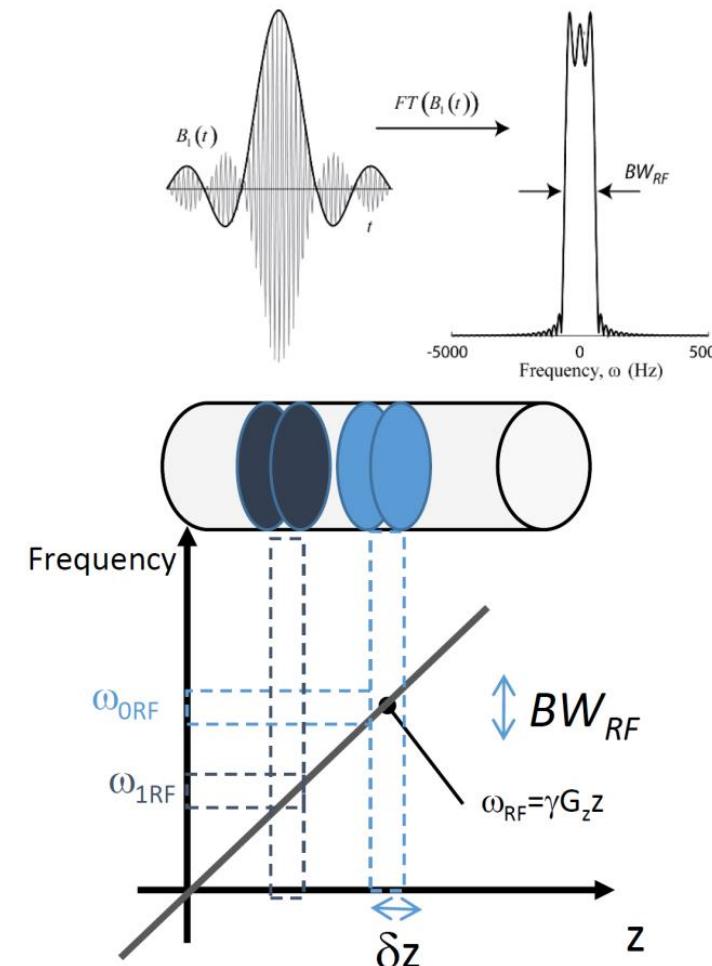
# RF PULSES ARE NEEDED FOR ALL MRI / MRS ACQUISITIONS

For slice selection, a gradient is applied during an RF-pulse, which is characterized by its excitation bandwidth ( $BW_{RF}$ )

## A simple pulse sequence - Spin Echo



A 'spin echo' will still use gradients – but it is the refocusing via the RF pulse which makes the distinction



# THE ROTATING FRAME(S)

## RF FRAME

In the laboratory frame:

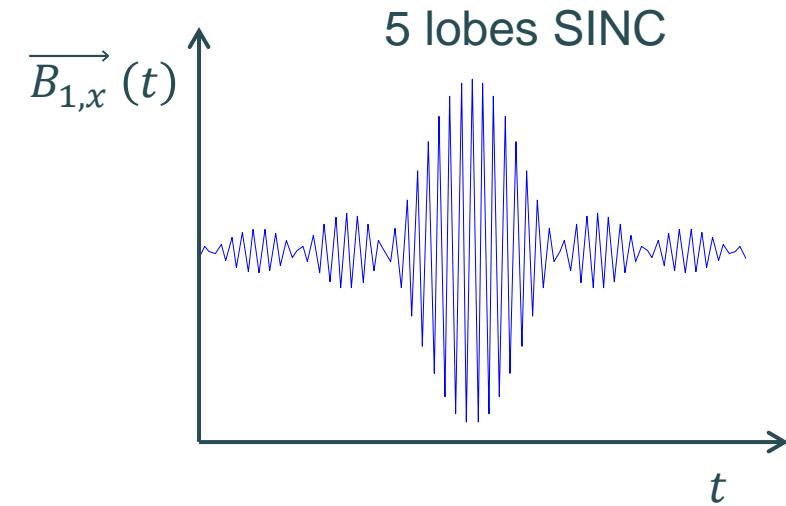
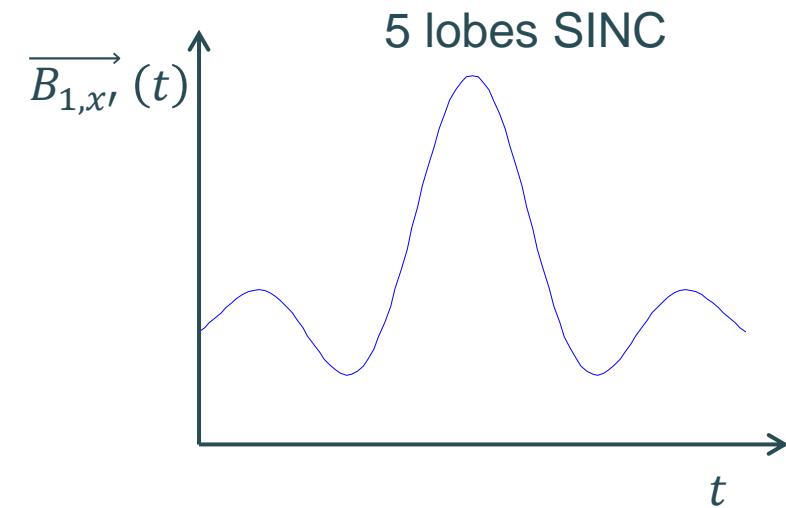
$$\vec{B}_1(t) = B_1(t) \cos(\omega_{RF} t) \hat{x} + B_1(t) \sin(\omega_{RF} t) \hat{y}$$

In the RF rotating frame:

$$\begin{pmatrix} B_{1,x'}(t) \\ B_{1,y'}(t) \\ B_{1,z'}(t) \end{pmatrix}_{rot} = \begin{pmatrix} \cos(\omega_{RF} t) & \sin(\omega_{RF} t) & 0 \\ -\sin(\omega_{RF} t) & \cos(\omega_{RF} t) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} B_1(t) \cos(\omega_{RF} t) \\ B_1(t) \sin(\omega_{RF} t) \\ 0 \end{pmatrix}_{lab}$$

$$\begin{pmatrix} B_{1,x'}(t) \\ B_{1,y'}(t) \\ B_{1,z'}(t) \end{pmatrix}_{rot} = \begin{pmatrix} B_1(t) \\ 0 \\ 0 \end{pmatrix}$$

The rotating frame has demodulated the RF oscillation and transformed the rapidly oscillating RF field into a much simpler form, the time-dependent envelope  $B_1(t)$ .



# THE ROTATING FRAME(S)

## RF FRAME

In the laboratory frame:

$$\vec{B}_1(t) = B_1(t) \cos(\omega_{RF} t) \hat{x} + B_1(t) \sin(\omega_{RF} t) \hat{y}$$

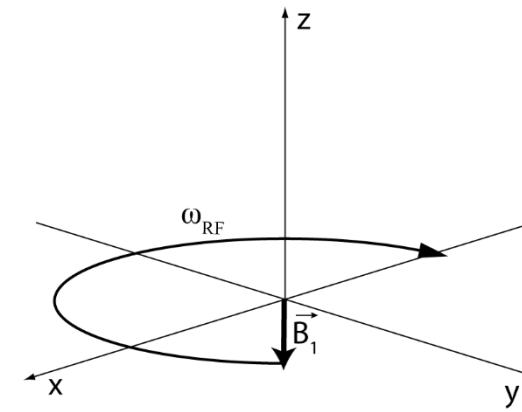
In the RF rotating frame:

$$\begin{pmatrix} B_{1,x'}(t) \\ B_{1,y'}(t) \\ B_{1,z'}(t) \end{pmatrix}_{rot} = \begin{pmatrix} \cos(\omega_{RF} t) & \sin(\omega_{RF} t) & 0 \\ -\sin(\omega_{RF} t) & \cos(\omega_{RF} t) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} B_1(t) \cos(\omega_{RF} t) \\ B_1(t) \sin(\omega_{RF} t) \\ 0 \end{pmatrix}_{lab}$$

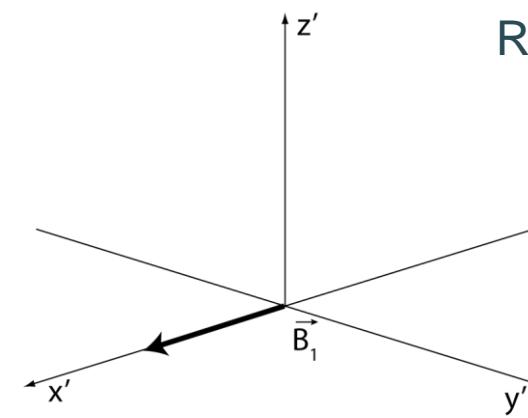
$$\begin{pmatrix} B_{1,x'}(t) \\ B_{1,y'}(t) \\ B_{1,z'}(t) \end{pmatrix}_{rot} = \begin{pmatrix} B_1(t) \\ 0 \\ 0 \end{pmatrix}$$

The rotating frame has demodulated the RF oscillation and transformed the rapidly oscillating RF field into a much simpler form, the time-dependent envelope  $B_1(t)$ .

Lab frame



RF frame



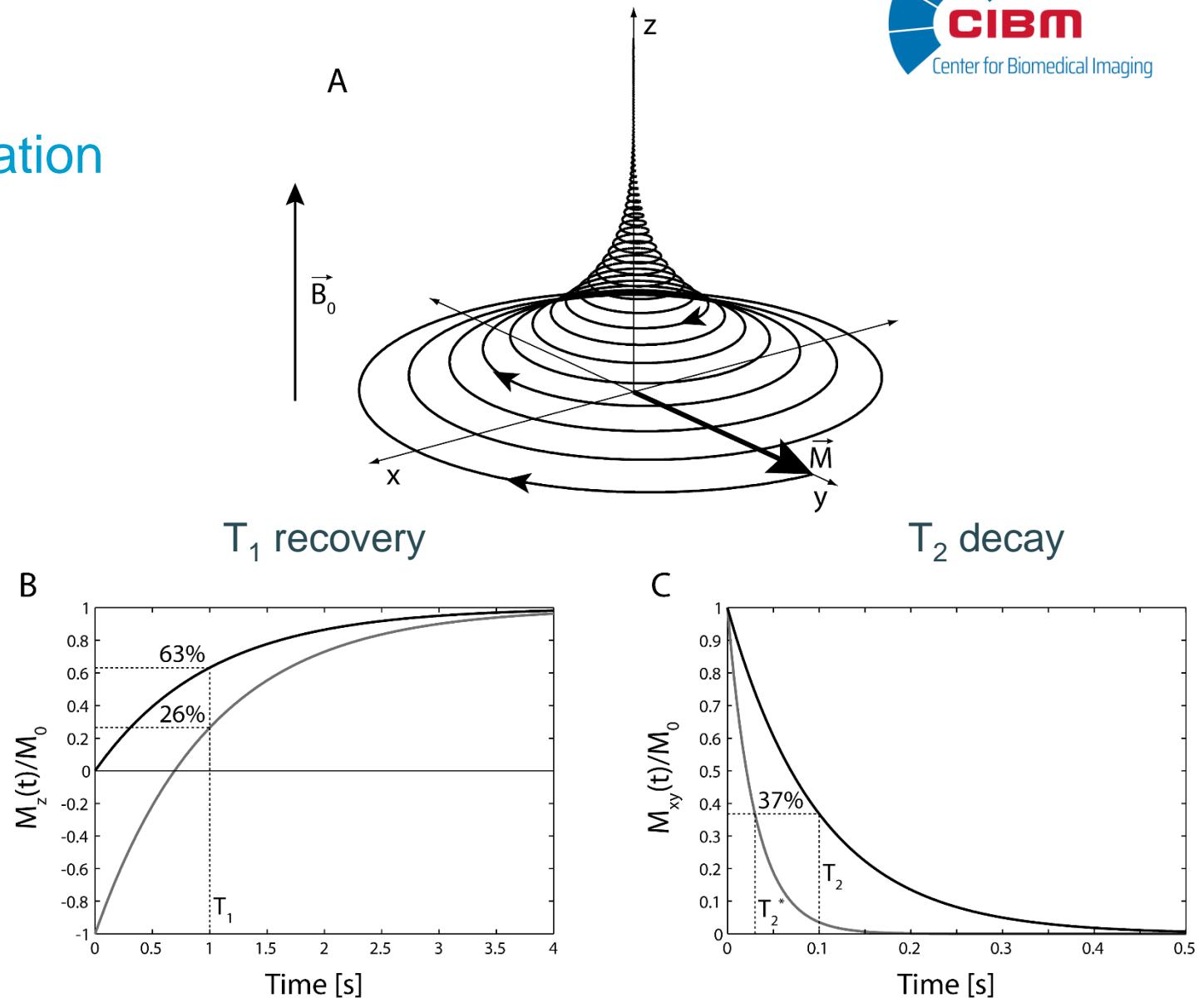
# RELAXATION(S)

## Macroscopic magnetization relaxation

After excitation, the spin ensemble reaches its thermal equilibrium:

1. spin-lattice relaxation time  $T_1$   
(transition from higher energy state to equilibrium)  
→ longitudinal relaxation
2. spin-spin relaxation time  $T_2$   
(loss of coherence (order) of the microscopic components)  
→ transverse relaxation

Relaxation is caused by random fluctuating magnetic fields on a molecular or submolecular level (dominated by dipolar coupling)



# TRANSVERSE RELAXATION

## Macroscopic contributions

- Inhomogeneous  $B_0$  contributes to the decay of transverse magnetization  
(bad shim, static  $B_0$  components due to differences in magnetic susceptibility between water and air leads in the proximity to their boundary)
- Then the decay of  $M_{xy}$  is faster (with the time constant  $1/T_2^*$ ) than that corresponding to the  $T_2$  relaxation time:

$$\frac{1}{T_2^*} = \frac{1}{T_2} + \Delta B_0 / 2\gamma$$

$\Delta B_0$  increases with magnetic field (shorter  $T_2^*$ ) and has less impact on low gyromagnetic ratio nuclei

$T_1$  and particularly  $T_2$  relaxation times are shorter than in aqueous solutions  
due to Interactions water / biomacromolecules / low molecular-weight solutes

# BLOCH EQUATION

$$\frac{d\vec{M}}{dt} = \underbrace{\gamma \vec{M} \times \vec{B}} - \underbrace{\frac{M_x \hat{x} + M_y \hat{y}}{T_2} - \frac{(M_0 - M_z) \hat{z}}{T_1}} + \underbrace{D \nabla^2 \vec{M}}$$

Larmor precession  
With the total field  
(or effective field in the  
rotating frame)

Transverse and longitudinal  
Relaxations

$T_2 \sim 50-100$  ms  
 $T_1 \sim 1$  s

Pulse duration  $\sim 100 \mu\text{s} - 5 \text{ ms}$

**Typically  
Neglected  
for RF design**

Diffusion effects.

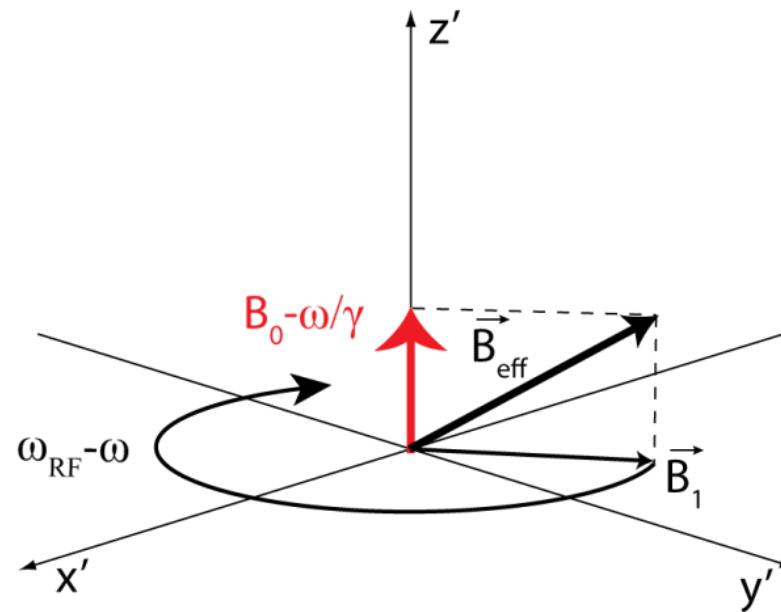
**Typically  
Neglected  
for RF design**

# BLOCH EQUATION

## IN A ROTATING FRAME ( $\omega$ )

$$\left( \frac{d\vec{M}}{dt} \right)_{rot} = \gamma \vec{M} \times \vec{B}_{eff}$$

$$B_{eff} = B_1(t) \cos((\omega_{RF} - \omega) t) \hat{x} + B_1(t) \sin((\omega_{RF} - \omega) t) \hat{y} + \left( B_0 - \frac{\omega}{\gamma} \right) \hat{z}$$

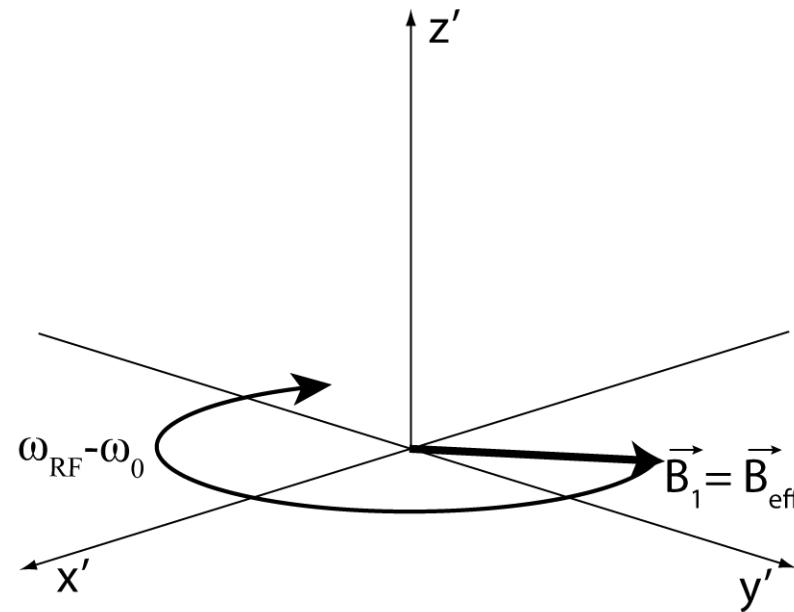


# BLOCH EQUATION

## IN THE LARMOR ROTATING FRAME ( $\omega_0$ )

$$\left( \frac{d\vec{M}}{dt} \right)_{rot} = \gamma \vec{M} \times \vec{B}_{eff}$$

$$B_{eff} = B_1(t) \cos((\omega_{RF} - \omega_0) t) \hat{x} + B_1(t) \sin((\omega_{RF} - \omega_0) t) \hat{y}$$

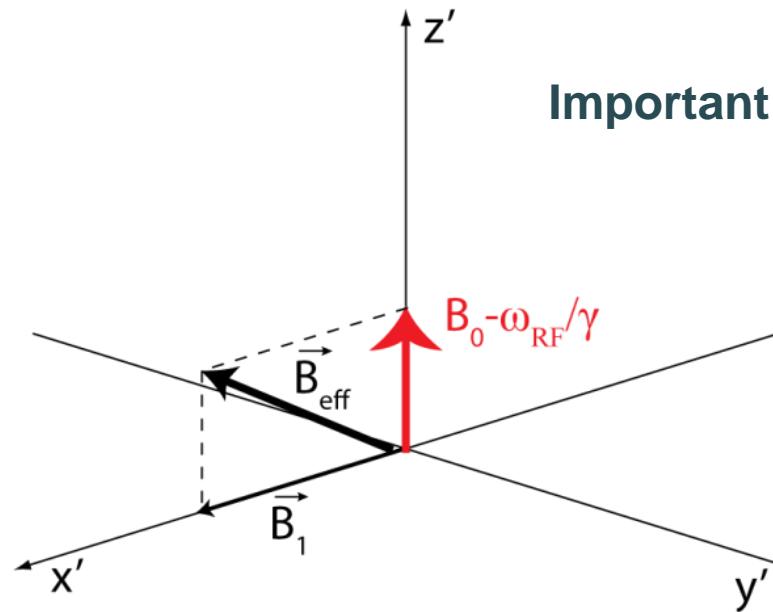


# BLOCH EQUATION

## IN THE RF FRAME ( $\omega_{RF}$ )

$$\left( \frac{d\vec{M}}{dt} \right)_{rot} = \gamma \vec{M} \times \vec{B}_{eff}$$

$$B_{eff} = B_1(t) \hat{x} + \left( B_0 - \frac{\omega_{RF}}{\gamma} \right) \hat{z}$$



Important to consider for off-resonance effects

# FLIP ANGLE

## OFF-RESONANCE EFFECTS

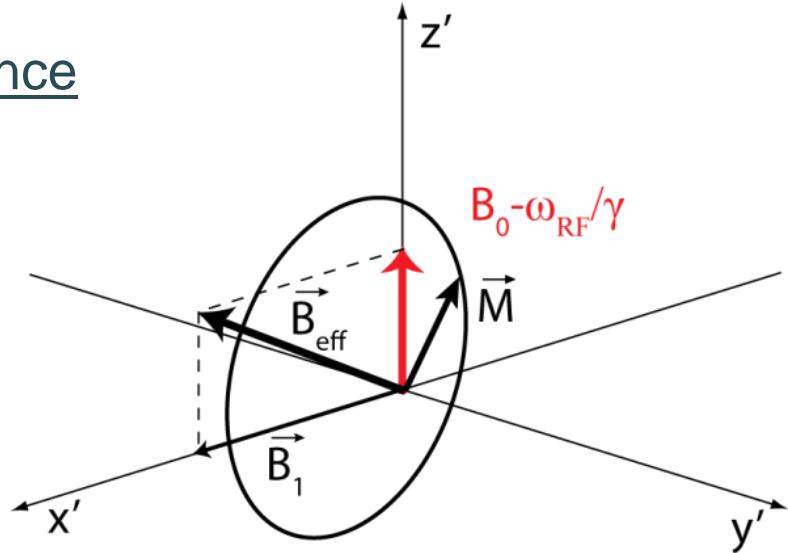
In the RF rotating frame:

$$\left( \frac{d\vec{M}}{dt} \right)_{RF} = \gamma \vec{M} \times \left[ B_1(t) \hat{x} + \left( B_0 - \frac{\omega_{RF}}{\gamma} \right) \hat{z} \right]$$

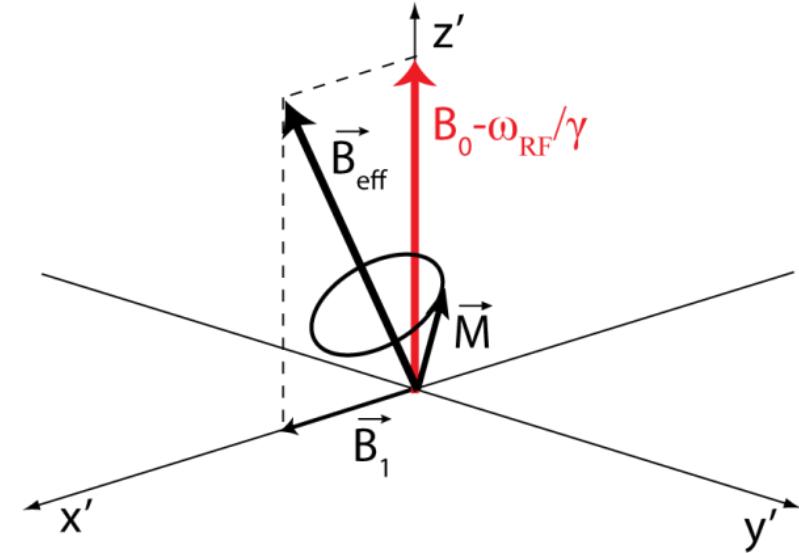
With the offset  $\Delta\omega = \gamma B_0 - \omega_{RF}$

The magnetization of a spin system with same offset  $\Delta\omega$  is called an isochromat.

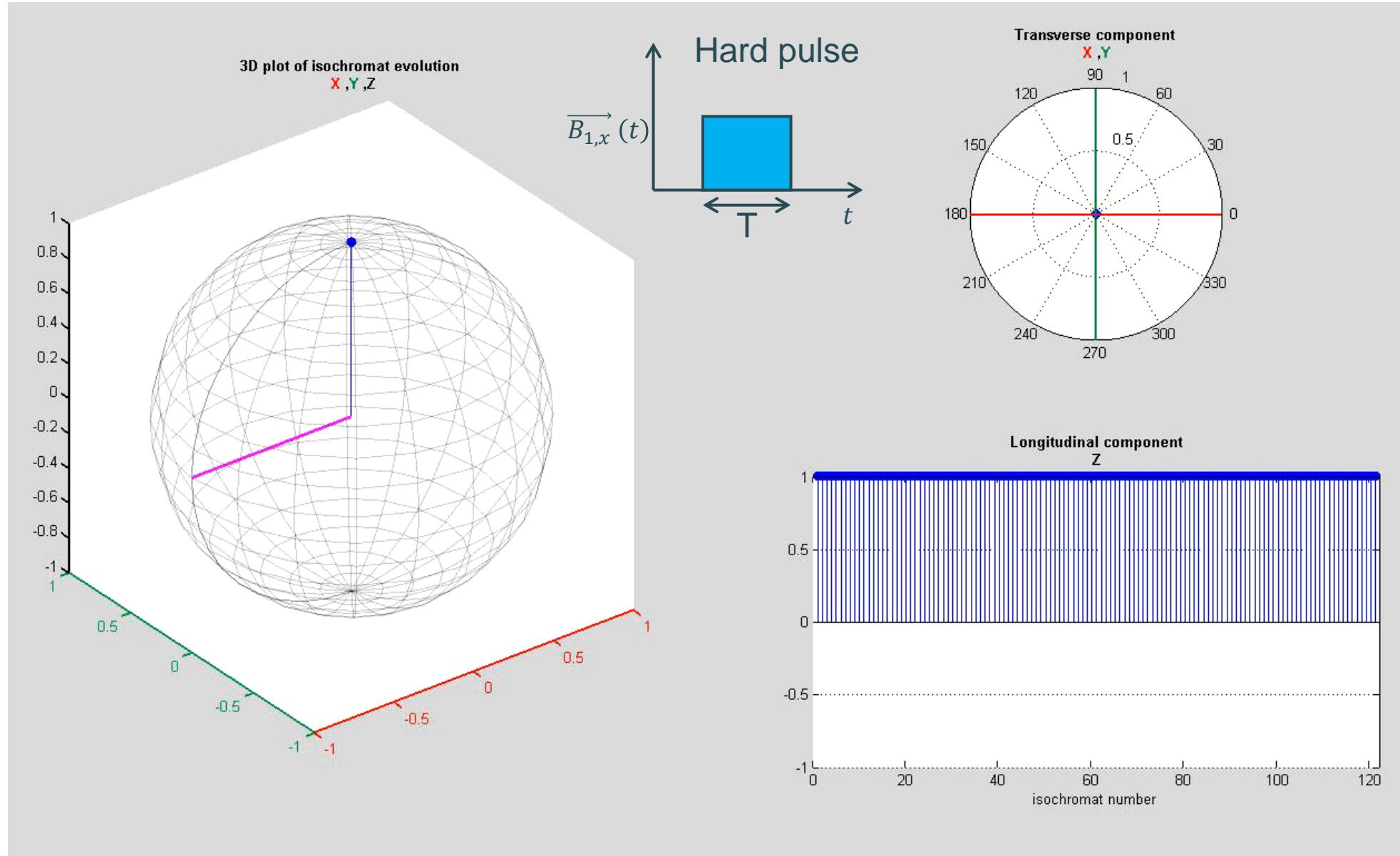
### Off-resonance



### Far off-resonance (no $xy$ plane crossing anymore)



# PULSE BANDWIDTH (90° PULSE EXAMPLE)



# FLIP ANGLE

## PULSE BANDWIDTH (180° PULSE EXAMPLE)

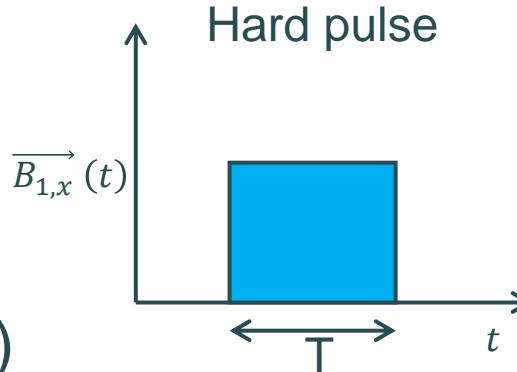
Hard pulse:

Parameters:

$$B_1(t)$$

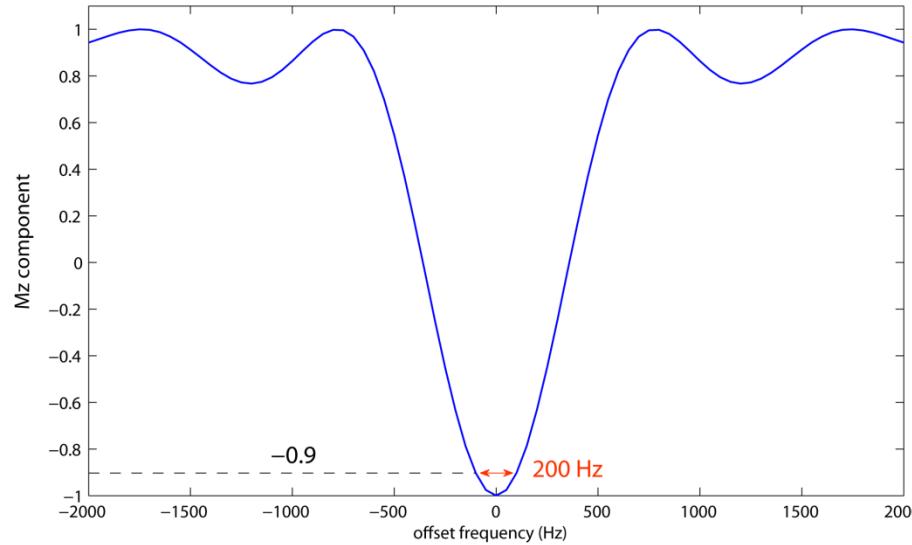
$$T$$

$$\omega_{RF} \text{ or } \omega_{RF}(t)$$



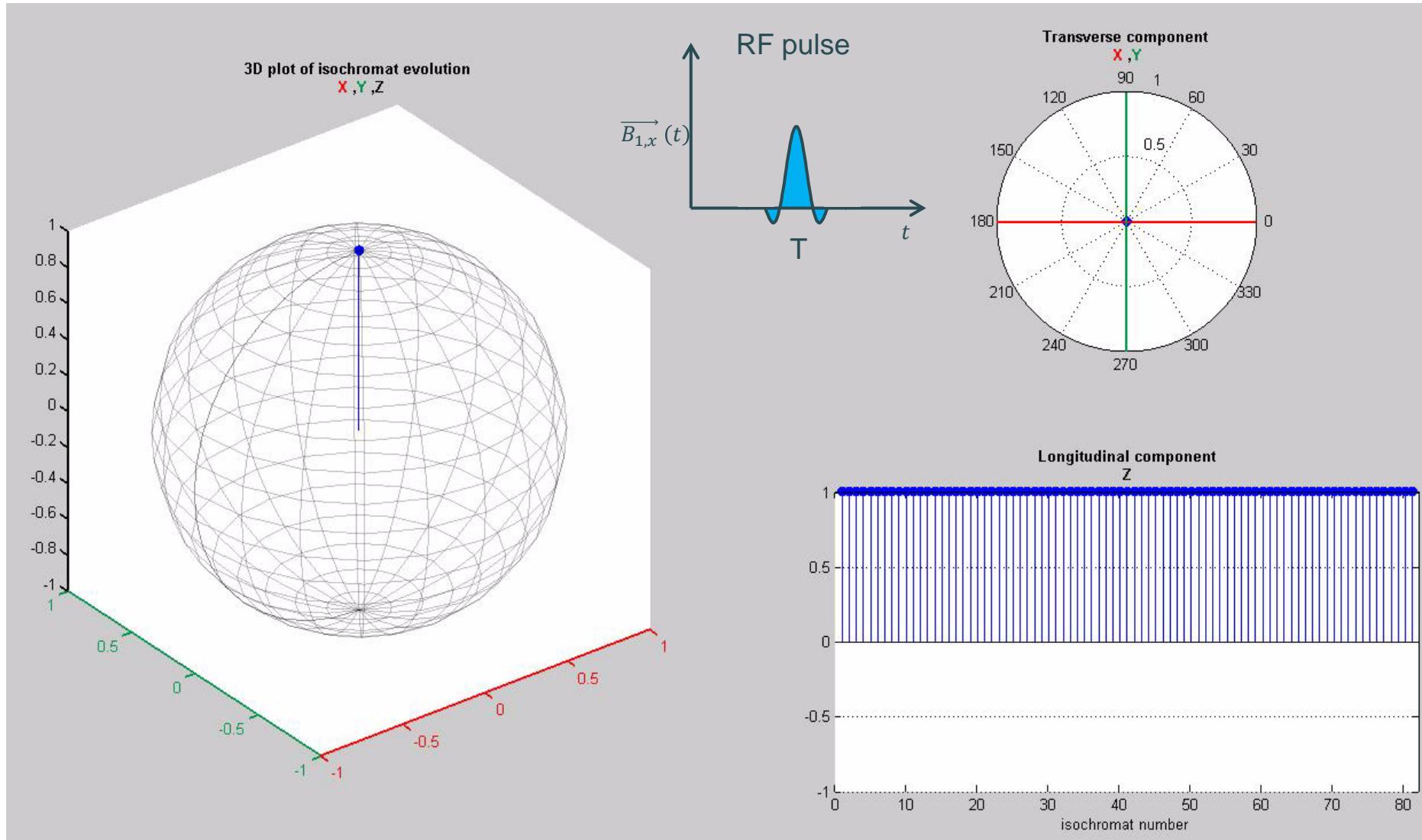
Characteristics:

(Example: inversion pulse)



# SINC PULSES

90° B1 at 32.8  $\mu\text{T}$  → duration 3.23 ms



# FLIP ANGLE

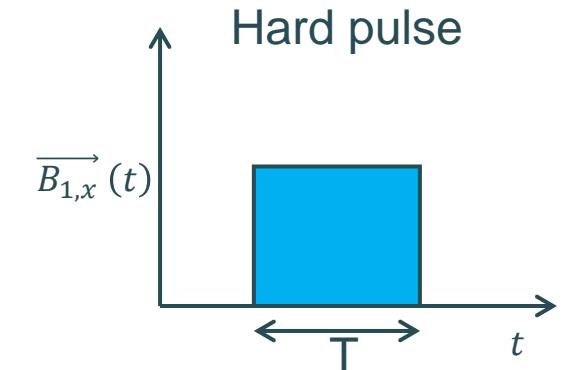
## FOURIER TRANSFORM APPROXIMATION

Complex notation:  $M_{\perp} = M_x + i M_y$

precession:  $\frac{dM_{\perp}}{dt} = -i\Delta\omega M_{\perp} + i\gamma B_1(t)M_z(t)$

With the initial conditions  $M_{\perp}(0) = 0$

$$M_{\perp}(t, \Delta\omega) = i\gamma e^{-i\Delta\omega t} \int_0^t M_z(t') B_1(t') e^{i\Delta\omega t'} dt'$$



For small flip angles,  $M_z(t') = M_0$

$$|M_{\perp}(t, \Delta\omega)| = \gamma M_0 \left| \int_0^t B_1(t') e^{i\Delta\omega t'} dt' \right|$$

**For small flip angles**, the pulse response profile is approximately equal to the modulus of the inverse Fourier transform of the RF envelope.

# FLIP ANGLE

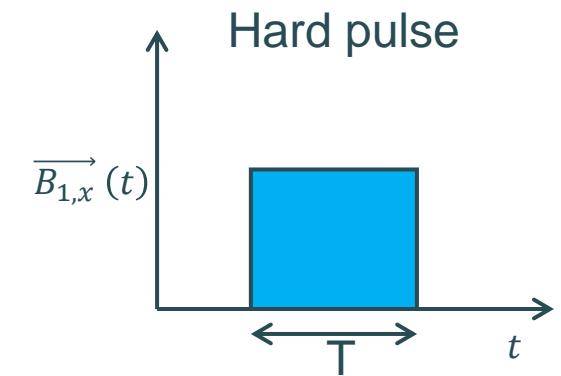
## FOURIER TRANSFORM APPROXIMATION

Complex notation:

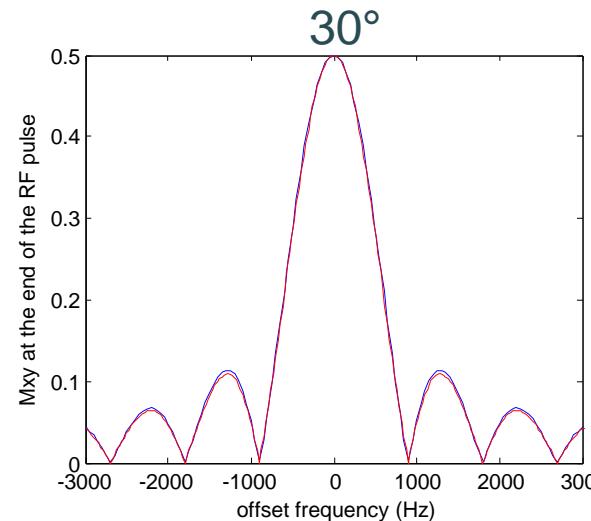
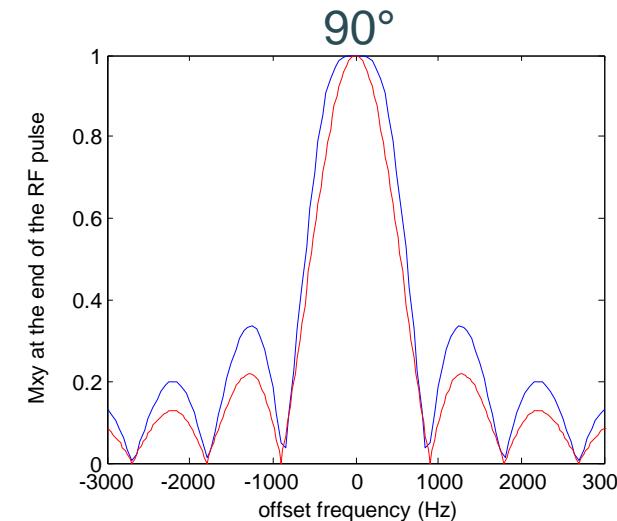
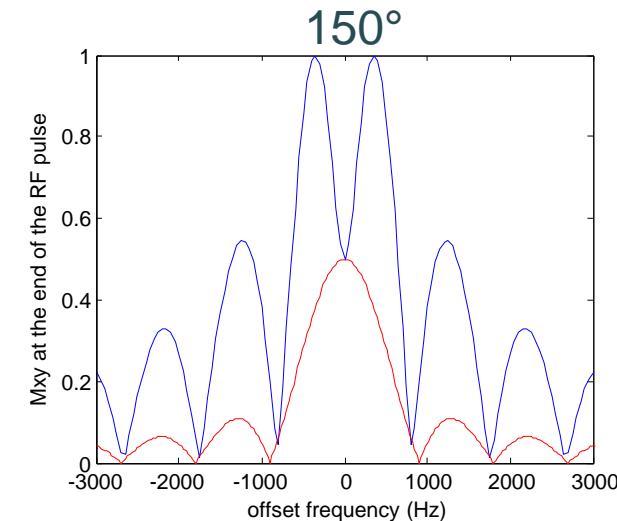
$$M_{\perp} = M_x + i M_y$$

$$|M_{\perp}(t, \Delta\omega)| = \gamma M_0 \left| \int_0^t B_1(t') e^{i \Delta\omega t'} dt' \right|$$

inverse Fourier transform



Different angles:



..... Fourier transform of the envelope  
— Solution of the Bloch equation

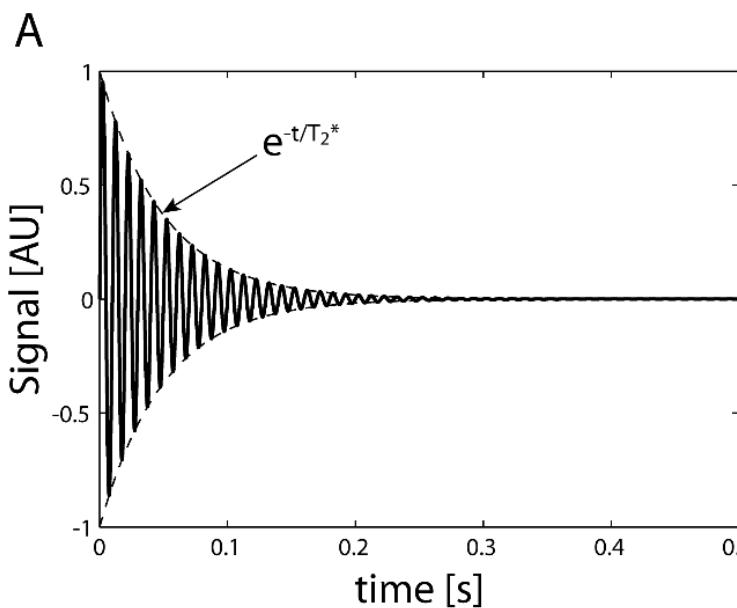
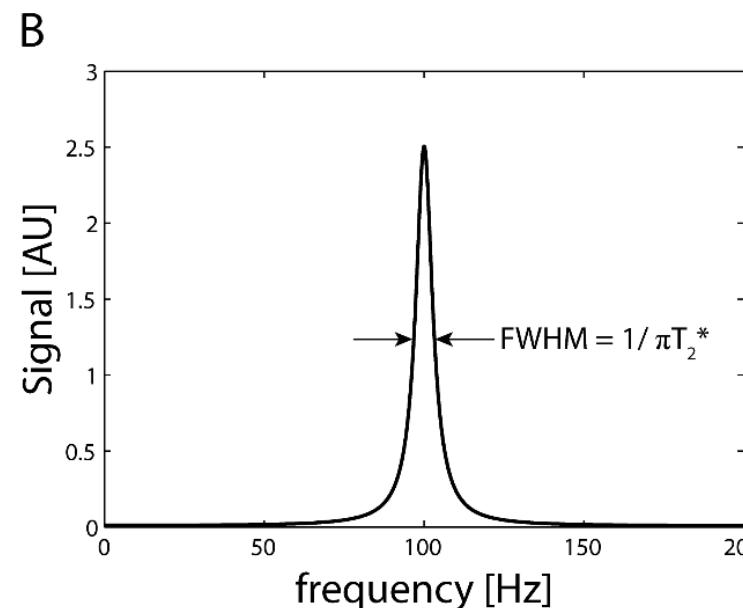
# BASIC PULSE SEQUENCES

## (FID, FREE INDUCTION DECAY)

### Pulse acquire sequence



Excitation  
pulse



During TR, T1 relaxation takes place.

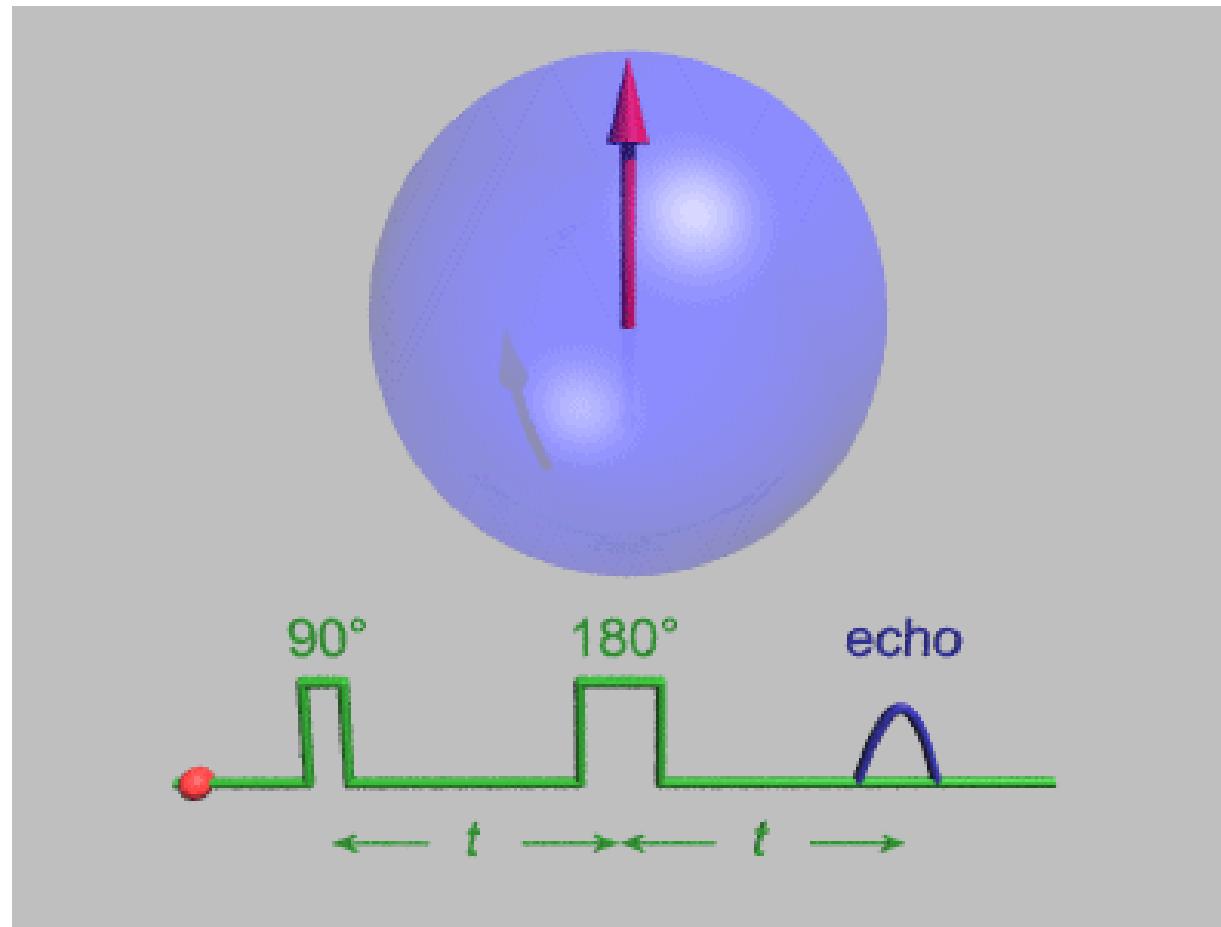
There is an optimal flip angle for maximal signal for a given TR and T1:

$$\theta_E = \arccos \left( e^{-\frac{TR}{T_1}} \right)$$

(Ernst angle)

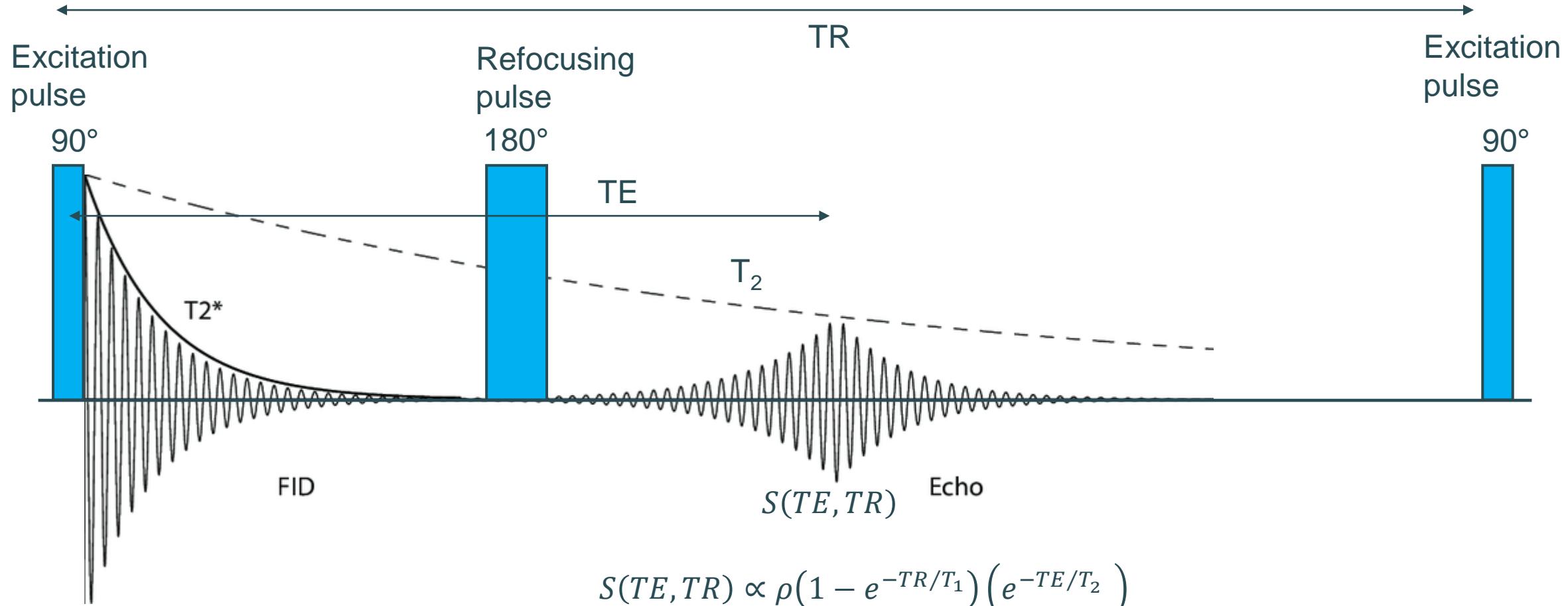
# BASIC PULSE SEQUENCES (SPIN-ECHO)

## Spin gymnastics



Gavin W Morley, Wikimedia Commons

# BASIC PULSE SEQUENCES (SPIN-ECHO)



In MRI, this can be used to generate  $T_2$  and  $T_1$  contrasts.

In MRS, it is typically used in fully relaxed conditions ( $T_1 > 5$  TR) to recover in-phase signal

# THANK YOU FOR YOUR ATTENTION



Questions ?

**PHYS-770**

**EPFL**

**[bernard.lanz@epfl.ch](mailto:bernard.lanz@epfl.ch)**